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OBJECTIVE
Demonstration of Pockels effect in a conoscopic beam path

UE4040500

OPTICS / POLARISAT ION

POCKELS EFFECT

SUMMARY
The Pockels effect is an electro-optical effect in which an electric field within a suitable material splits 

a light beam into two beams polarised perpendicular to one another. This ability to produce optical 

birefringence derives from the differing refractive indices depending on the direction of propagation 

and polarisation of the light. In the case of the Pockels effect, this increases linearly with the strength 

of the electric field as is demonstrated in this experiment using a lithium niobate crystal (LiNbO3) 

placed in the path of a conoscopic beam. The interference pattern is formed by two sets of hyperbolae, 

from which the position of the optical axis for the birefringence can be seen directly.

EXPERIMENT 
PROCEDURE

• �Demonstrate birefringence in a

conoscopic beam path.

• �See how the birefringence changes

when an electric field is applied.

• �Determine the half-wave retardation

voltage.

BASIC PRINCIPLES
The Pockels effect is an electro-optical effect in which an electric field 

within a suitable material splits a light beam into two beams polarised 

perpendicular to one another. This ability to produce optical birefrin-

gence derives from the differing refractive indices depending on the 

direction of propagation and polarisation of the light. In the case of the 

Pockels effect, this increases linearly with the strength of the electric 

field as is demonstrated in this experiment using a lithium niobate 

crystal (LiNbO3) placed in the path of a conoscopic beam.

The crystal in this case is located inside a Pockels cell in transverse 

alignment, where an electric field is applied across the crystal in the 

direction of the optical axis for the birefringence (see Fig. 1). The light 

beam passing perpendicularly through the crystal splits into an ordinary 

and an extraordinary, i.e. one polarised in the direction of the optical axis 

for the birefringence and another polarised perpendicular to it. In the case 

of lithium niobate, the refractive index for the ordinary beam for no = 2.29 

as measured at the wavelength of an He-Ne laser λ = 632.8 nm while that 

for the extraordinary beam is ne = 2.20. The path difference between the 

ordinary and extraordinary beams is as follows:

(1)	 ,

where d = 20 mm, the thickness of the crystal in the direction of the beam.

Demonstration of the birefringence uses a classical beam path as suggested 

for the purpose in numerous optics text books. The crystal is illuminated by 

a divergent, linearly polarised light beam and the transmitted light is 

observed behind an orthogonal analyser. The optical axis of the birefrin-

gence is highly visible in the interference pattern since it stands out from 

the background due to its symmetry. In this experiment, it is parallel to the 

entry and exit surfaces on the crystal, therefore creating an interference 

pattern with two sets of hyperbolae rotated by 90° with respect to one 

another. The actual axis of the first set of hyperbolae is parallel to the 

optical axis of the birefringence and that of the second set is perpendicular 

to it.

The dark bands in the sets of hyperbolae arise for beams where the differ-

ence between the optical paths of the ordinary and extraordinary beams in 

the crystal are an integer multiple of the wavelength. These beams retain 

their original linear polarisation on passing through the crystal and get 

blocked by the analyser.

The path difference corresponds to about 2800 wavelengths of the laser 

light being used. However, in general Δ is not precisely an integer multiple 

of the wavelength λ, but rather lies between two values Δm = m · λ and

Δm+1 = (m + 1) · λ. For the dark lines of the first set of hyperbolae the path

differences are Δm+1, Δm+2, Δm+3, etc. Those for the second set correspond 

to Δm, Δm–1, Δm–2, etc. (see Fig. 2). The position of the dark bands, or more 

accurately their distance from the centre, depends on the difference 

between Δ and m · λ. The Pockels effect increases or decreases the differ-

ence between the primary refractive indices no − ne depending on the sign 

of the voltage applied. This means that the difference Δ − m · λ changes 

and so therefore does the position of the dark interference bands. If the 

so-called half-wave retardation voltage Uπ is applied, then Δ changes by 

one half of the wavelength. Then the dark interference bands shift to the 

position of the bright bands and vice versa. This process is repeated every 

time the voltage is increased by Uπ.

EVALUATION
For a voltage U1 the dark interference bands of order +1 are located 

precisely in the centre. For the next voltage U2 it is those of order +2 

which are in the centre. Then the half-wave voltage is as follows:

REQUIRED APPARATUS
Quantity Description Number

1 Pockels Cell on Stem 1013393

1 Optical Precision Bench D, 100 cm 1002628

3 Optical Rider D, 90/50 1002635

2 Optical Rider D, 90/36 1012401

1 He-Ne Laser 1003165

1 Achromatic Objective 10x / 0.25 1005408

1 Polarisation Filter on Stem 1008668

1 Convex Lens on Stem f =+50 mm 1003022

1 Projection Screen 1000608

1 High-Voltage Power Supply E 5 kV (230 V, 50/60 Hz) 1013412 or

High-Voltage Power Supply E 5 kV (115 V, 50/60 Hz) 1017725

1 Pair of Safety Experiment Leads, 75 cm 1002849

Fig. 1: Schematic of Pockels cell in a conoscopic beam path between the 

polariser and analyser

Fig. 2: Interference pattern 

with optical axis of crystal in 

the direction of the arrow. 

The indices of the dark inter-

ference bands indicate the 

path difference between the 

ordinary and extraordinary 

beams in units of the wave-

length.

Fig. 3: Change in interference pattern due to Pockels effect. The hyperbolae 

indicated by thicker lines are those of order +1 in the interference pattern.

Δ = d⋅ no − ne( )

Uπ =
U2 −U1
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