AC Resistance

DETERMINE THE AC RESISTANCE IN A CIRCUIT WITH CAPACITIVE AND RESISTIVE LOADS.

- Determine the amplitude and phase of the overall resistance as a function of frequency for a series circuit.
- Determine the amplitude and phase of the overall resistance as a function of frequency for a parallel circuit.

Fig. 1: Measurement set-up for series circuit (left) and parallel circuit (right).

GENERAL PRINCIPLES

In AC circuits, it is common to use complex numbers to describe the resistance in circuits with capacitors because this actually makes calculation easier. This is because not only the amplitude of the current and voltage is a factor, but also the phase relationships between the two need to be taken into account (this complex resistance is usually called impedance). Series and parallel circuits with both ohmic and capacitive resistance can then be described quite easily, although in each case, only the real component is measurable).
The complex resistance (impedance) of a capacitor with capacitance C in a circuit with an alternating current of frequency f is as follows:

$$
\text { (1) } \quad X_{\mathrm{c}}=-i \cdot X_{\mathrm{c} 0}=-i \cdot\left(\frac{1}{\omega \cdot C}\right)=\frac{1}{i \cdot \omega \cdot C} \text {, }
$$

Angular frequency $\omega=2 \pi \cdot f$
Therefore series circuits containing a capacitor and an ohmic resistor R will have the following overall resistance:
(2) $Z_{\mathrm{S}}=\frac{1}{i \cdot \omega \cdot C}+R$,

A parallel circuit can be assigned the following overall resistance
(3) $Z_{P}=\frac{1}{i \cdot \omega \cdot C+\frac{1}{R}}$

The usual way of expressing this is as follows:
(4) $Z=Z_{0} \cdot \exp (i \cdot \varphi)$

This becomes

$$
\begin{align*}
Z_{S} & =Z_{S 0} \cdot \exp \left(i \cdot \varphi_{S}\right) \\
& =\frac{\sqrt{1+(\omega \cdot C \cdot R)^{2}}}{\omega \cdot C} \cdot \exp \left(i \cdot \varphi_{S}\right) \tag{5}
\end{align*}
$$

where $\tan \varphi_{\mathrm{S}}=-\frac{1}{\omega \cdot C \cdot R}$
and
(6)

$$
Z_{\mathrm{P}}=Z_{\mathrm{P} 0} \cdot \exp \left(i \cdot \varphi_{\mathrm{P}}\right)
$$

$$
=\frac{R}{\sqrt{1+(\omega \cdot C \cdot R)^{2}}} \cdot \exp \left(i \cdot \varphi_{\rho}\right)
$$

where $\quad \tan \varphi_{\mathrm{P}}=-\omega \cdot C \cdot R$.
Assume the total impedance $Z=Z_{\mathrm{S}}$ or Z_{P} has the following voltage applied across it:
(7) $U=U_{0} \cdot \exp (i \cdot 2 \cdot \pi \cdot f \cdot t)$

The current which flows would then be as follows:

$$
\text { (8) } \begin{aligned}
I & =\frac{U_{0}}{Z_{0}} \cdot \exp (i \cdot(2 \cdot \pi \cdot f \cdot t-\varphi)) \\
& =I_{0} \cdot \exp (i \cdot(2 \cdot \pi \cdot f \cdot t-\varphi))
\end{aligned}
$$

In the experiment this current is determined by measuring the drop in voltage $U_{m}(t)$ across a resistor R_{m} (Fig. 2, 3). The resistance value for this resistor is chosen such that $U_{\mathrm{m} 0} \ll U_{0}$, i.e. nearly all of the applied voltage drops across Z_{s} or Z_{p}. The current so determined will be flowing through both Z_{S} and Z_{P}, since the two resistors are connected in series with R_{m} (see equivalent circuit in Figs. 2 and 3). Since $U_{\mathrm{m}}(t)=I(t) \cdot R_{\mathrm{m}}$, the change in voltage over time $U_{\mathrm{m}}(t)$ reflects the change in current $l(t)$.

LIST OF EQUIPMENT

1 Plug-In Board for Components
1 Resistor 1Ω, 2 W, P2W19
1 Resistor 100Ω, 2 W, P2W19
1012902 (U33250)
1012903 (U333011) 1012910 (U333018)
1 Capacitor $10 \mu \mathrm{~F}, 35 \mathrm{~V}$, P2W19
1 Capacitor $1 \mu \mathrm{~F}, 100 \mathrm{~V}$, P2W19
1 Capacitor $0.1 \mu \mathrm{~F}, 100 \mathrm{~V}$, P2W19
1 Function Generator FG 100 @230V

1012957 (U333065)

1012955 (U333063)
1012953 (U333061)
or
1 Function Generator FG 100 @115V
1 PC Oscilloscope, $2 \times 25 \mathrm{MHz}$
1009956 U8533600-115)
1020857 (U11830)
2 HF Patch Cord, BNC/4 mm Plug
1 Set of 15 Experiment Leads, $1 \mathrm{~mm}^{2}$

1002748 (U11257)
1002840 (U13800)

SET-UP AND EXPERIMENT PROCEDURE

Series circuit

- Set up the equipment for measuring a series circuit (Fig. 1, left) as shown in the sketch of the circuit diagram (Fig. 2) with components $R_{\mathrm{m}}=1 \Omega, \quad R=100 \Omega$ and $C=10 \mu \mathrm{~F}$.
- Connect the output signal $U_{\mathrm{m}}(t)=I(t) \cdot R_{\mathrm{m}}$ to channel CH 1 on the oscillscope and the input signal $U(t)$ to channel CH2.

Fig. 2: Circuit diagram sketch (top left), equivalent circuit diagram (top right) and set-up schematic (bottom) for series circuit.

Fig. 3: Circuit diagram sketch (top left), equivalent circuit diagram (top right) and set-up schematic (bottom) for parallel circuit.

- Set up the PC oscilloscope with the following parameters:

Horizontal:
Time base:
Horizontal trigger position
$50 \mu \mathrm{~s} / \mathrm{div}$

Vertical:
CH1:
Voltage scale division:
Zero position:
CH 2 :
Voltage scale division:
Zero position:
Trigger:
Single (not Alternate)
Source:
Mode:
Edge:
Threshold:
Trigger mode:
0.0 ns
$20 \mathrm{mV} /$ div DC 0.0 divs

2 V/div DC 0.0 divs

CH2
Edge
Rising
0.000 mV

Auto

Note

It will be necessary to change the Time/div and Volts/div settings during the series of measurements.

- Select a sinusoidal wave form on the function generator and adjust the amplitude of the input signal to $U_{0}=6 \mathrm{~V}$. Set the amplitude control in such a way that the maximum and minimum of the sinusoidal signal on channel CH2 of the oscilloscope are separated by three divisions (for a setting of $2 \mathrm{~V} / \mathrm{div}$).
- Set up the following frequencies $2000 \mathrm{~Hz}, 1000 \mathrm{~Hz}$,
$500 \mathrm{~Hz}, 200 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 50 Hz one by one on the function generator. Calculate the corresponding period durations using the formula $T=1 / f$ and enter them into Table 1 along with the frequencies.
- Read off the amplitude $U_{m 0}$ of the output signal $U_{m}(t)$ from the oscilloscope and enter the values into Table 1.
- Read off the oscilloscope the time difference Δt between the places where the signals $U(t)$ und $U_{m}(t)$ cross the zero axis and enter the values into Table 1.
- Repeat the measurements using the capacitor of value $C=1 \mu \mathrm{~F}$ at the same frequencies and using the capacitor of value $C=0.1 \mu \mathrm{~F}$ at 2000 Hz and 1000 Hz . Enter all the results into Table 1.

Parallel circuit

- Set up the equipment for measuring a parallel circuit (Fig. 1, right) as shown in the sketch of the circuit diagram (Fig. 3) with components $R_{\mathrm{m}}=1 \Omega, R=100 \Omega$ and $C=10 \mu \mathrm{~F}$.
- Carry out the measurements in a similar way to how they were done on the series circuit. Select the same initial parameters for the PC oscilloscope except that Volts/div on channel CH1 should be set to 200 mV DC.
- Enter all the measurements into Table 2.

SAMPLE MEASUREMENT AND EVALUATION

Tab. 1: Stipulated, measured and calculated values for series circuit, $U_{0}=6 \mathrm{~V}, R_{\mathrm{m}}=1 \Omega$.

$C / \mu \mathrm{F}$	f / Hz	T / ms	$X_{\mathrm{Co} 0} / \Omega$	$U_{\mathrm{mo} 0} / \mathrm{mV}$	$\Delta t / \mathrm{ms}$	$10 / \mathrm{mA}$	$Z_{\mathrm{s} 0} / \Omega$	$\varphi \mathrm{s}$
10.0	2000	0.5	8.0	56.9	0.006	56.9	105.4	4.3°
10.0	1000	1.0	15.9	56.7	0.026	56.7	105.8	9.4°
10.0	500	2.0	31.8	53.5	0.095	53.5	112.1	17.1°
10.0	200	5.0	79.6	42.8	0.500	42.8	140.2	36.0°
10.0	100	10.0	159.2	30.2	1.479	30.2	198.7	53.2°
10.0	50	20.0	318.3	17.9	3.689	17.9	335.2	66.4°
1.0	2000	0.5	79.6	45.8	0.055	45.8	131.0	39.6°
1.0	1000	1.0	159.2	31.1	0.157	31.1	192.9	56.5°
1.0	500	2.0	318.3	18.2	0.400	18.2	329.7	72.0°
1.0	200	5.0	795.8	7.0	1.153	7.0	857.1	83.0°
1.0	100	10.0	1591.5	4.1	2.517	4.1	1463.4	90.6°
0.1	2000	0.5	795.8	7.6	0.114	7.6	789.5	82.1°
0.1	1000	1.0	1591.5	3.8	0.229	3.8	1578.9	82.4°

Tab. 2: Stipulated, measured and calculated values for parallel circuit, $U_{0}=6 \mathrm{~V}, R_{\mathrm{m}}=1 \Omega$.

$C / \mu \mathrm{F}$	f / Hz	T / ms	$X_{\mathrm{C} 0} / \Omega$	$U_{\mathrm{mo}} / \mathrm{mV}$	$\Delta t / \mathrm{ms}$	I_{0} / mA	Z_{Po} / Ω	$\varphi \mathrm{P}$
10.0	2000	0.5	8.0	679.7	0.078	679.7	8.8	56.2
10.0	1000	1.0	15.9	360.9	0.194	360.9	16.6	69.8
10.0	500	2.0	31.8	190.9	0.359	190.9	31.4	64.6
10.0	200	5.0	79.6	96.4	0.507	96.4	62.2	36.5
10.0	100	10.0	159.2	71.1	0.826	71.1	84.4	29.7
10.0	50	20.0	318.3	62.5	0.893	62.5	96.0	16.1
1.0	2000	0.5	79.6	93.1	0.069	93.1	64.4	49.7
1.0	1000	1.0	159.2	70.2	0.081	70.2	85.5	29.2
1.0	500	2.0	318.3	61.5	0.086	61.5	97.6	15.5
1.0	200	5.0	795.8	59.2	0.073	59.2	101.4	5.3
1.0	100	10.0	1591.5	58.6	0.069	58.6	102.4	2.5
0.1	2000	0.5	795.8	60.1	0.010	60.1	99.8	7.2
0.1	1000	1.0	1591.5	58.2	0.010	58.2	103.1	3.6

- Calculate the magnitude of the capacitive impedance using the formula $X_{\mathrm{co}}=1 /(2 \cdot \pi \cdot f \cdot C)$ (se equation 1) and enter the values into tables 1 and 2 .
- Calculate the values of current amplitude from the measurements of U_{mo} (tables 1 and 2) and $R_{\mathrm{m}}(1 \Omega)$ using the formula $l_{0}=U_{\mathrm{mo}} / R_{\mathrm{m}}$ and enter the results into tables 1 and 2.
- Calculate the magnitudes of the total impedance $Z_{\mathrm{s} 0}$ and $Z_{\text {Po }}$ using the formula $Z_{0}=U_{0} / l_{0}\left(U_{0}=6 \mathrm{~V}\right)$ and enter the results into Table 3.
- Calculate the phase shift from the values of the period T and time differential Δt (tables 1 and 2) using the formula $\varphi=360^{\circ} \cdot \Delta t / \mathrm{T}$. Enter the results into tables 1 and 2.
- Calculate the magnitudes of the total impedance $Z_{\mathrm{s} 0}$ and $Z_{\mathrm{P} 0}$ along with the phase shifts $\varphi \mathrm{s}$ and $\varphi \mathrm{p}$ for both series and parallel circuits. Plot them on a graph as a function of $X_{\mathrm{c} 0}$ (Figs. $4-7$). Calculate the theoretical magnitudes of the total impedance $Z_{\mathrm{s} 0}$ and Z_{PO} along with the phase shifts φS and φP according to equation (5) for the series circuit and equation (6) for the parallel circuit.
(9) $Z_{\mathrm{S} 0}=\sqrt{R^{2}+X_{\mathrm{C} 0}{ }^{2}}, \varphi_{\mathrm{S}}=\arctan \left(-\frac{X_{\mathrm{C} 0}}{R}\right)$
(10) $Z_{\mathrm{P} 0}=\frac{1}{\sqrt{\frac{1}{R^{2}}+\frac{1}{X_{\mathrm{C} 0}{ }^{2}}}}, \varphi_{\mathrm{P}}=\arctan \left(-\frac{R}{X_{\mathrm{C} 0}}\right)$,

Draw lines fitted to the points in Figs. $4-7$.

Summary

For small frequencies, the series circuit will exhibit a resistance equal to the capacitive impedance, while in the parallel circuit it will have the value of the ohmic resistance. Phase shift is between 0° and -90° and will be -45° when the capacitive impedance and ohmic resistance are equal.

Fig. 4: Total impedance in series circuit.

Fig. 5: Phase shift in series circuit.

Fig. 6: Total impedance in parallel circuit.

Fig. 7: Phase shift in parallel circuit.

