## Electricity

DC and AC Circuits

## Impedance of a Capacitor in an AC Circuit

## DETERMINE THE IMPEDANCE OF A CAPACITOR AS A FUNCTION OF CAPACITANCE AND FREQUENCY

- Determine the amplitude and phase of capacitive impedance as a function of the capacitance.
- Determine the amplitude and phase of capacitive impedance as a function of the frequency.


Fig. 1: Experiment set-up

## GENERAL PRINCIPLES

Any change in voltage across a capacitor gives rise to a flow of current through the component. If an AC voltage is applied, alternating current will flow which is shifted in phase with respect to the voltage. In mathematical terms, the relationship can be expressed most easily if current, voltage and impedance are regarded as complex values, whereby the real components need to be considered.

The capacitor equation leads directly to the following:
(1) $I=C \cdot \frac{\mathrm{~d} U}{\mathrm{~d} t}$

I: Current, U: Voltage, C: Capacitance
Assume the following voltage is applied:
(2) $U=U_{0} \cdot \exp (i \omega t)$

This gives rise to a current as follows:
(3) $I=i \cdot \omega \cdot C \cdot U_{0} \cdot \exp (i \omega t)$

Capacitor $C$ is then assigned the complex impedance
(4) $X_{C}=\frac{U}{l}=\frac{1}{i \cdot \omega \cdot C}=\frac{1}{i \cdot 2 \pi \cdot f \cdot C}$

The real component of this is measurable, therefore
(5) $U=U_{0} \cdot \cos \omega t$
(6) $I=\omega \cdot C \cdot U_{0} \cos \left(\omega t+\frac{\pi}{2}\right)=I_{0} \cos \left(\omega t+\frac{\pi}{2}\right)$
(7) $\quad X_{C}=\frac{U_{0}}{I_{0}}=\frac{1}{\omega \cdot C}=\frac{1}{2 \pi \cdot f \cdot C}$

In this experiment, a frequency generator supplies an alternating voltage with a frequency of up to 5 kHz . A dual-channel oscilloscope is used to record the voltage and current, so that the amplitude and phase of both can be determined. The current through the capacitor is related to the voltage drop across a resistor $R$ with a value which is negligible in comparison to the impedance exhibited by the capacitor itself.

As an option, voltage and current can also be recorded using the VinciLab data logger and Coach 7 software with voltage sensors.

## LIST OF EQUIPMENT

1 Plug-In Board for Components 1012902 (U33250)
1 Resistor $1 \Omega$, 2 W, P2W19
1 Resistor $10 \Omega$, 2 W , P2W19

1012903 (U333011)

3 Capacitor $1 \mu \mathrm{~F}, 100 \mathrm{~V}$, P2W19

1012955 (U333063)
1 Capacitor $0.1 \mu \mathrm{~F}, 100 \mathrm{~V}$, P2W19

1012953 (U333061)
1 Function Generator FG 100 @230V
${ }_{1}^{\text {or }}$ Function Generator FG 100 @115V
1 Set of 15 Experiment Leads, 1 mm ${ }^{2}$
1 PC Oscilloscope $2 \times 25 \mathrm{MHz}$
1002840 (U13800)

2 HF Patch Cord, BNC/4 mm Plug

1002748 (U11257)
Optional
1 VinciLab 1021477 (UCMA-001)
1 Coach 7, School Site License
5 Years 1021522 (UCMA-18500)
1 Coach 7, University License 5 Years

1021524 (UCMA-185U)
2 Voltage Sensor 10 V , Differential

1021680 (UCMA-0210i)
1 Voltage Sensor 500 mV , Differential
1 Sensor Cable
1021681 (UCMA-BT32i)
1021514 (UCMA-BTsc1)

## SET-UP AND EXPERIMENT PROCEDURE

- Set up the measuring equipment (Fig. 1) as shown in the circuit diagram (Fig. 2) with resistor $R=1 \Omega$ and a capacitor $C=1 \mu \mathrm{~F}$.
- Connect the measuring lead for the recording of the voltage curve $U_{R}(t)=R \cdot l(t)$ across the resistor to channel CH 1 and the measuring lead for recording the curve $U_{\mathrm{C}}(t)$ across the capacitor to channel CH 2 of the oscilloscope.


Fig. 2: Circuit diagram sketch (top) and set-up schematic (bottom).

- Set the following parameters on the PC oscilloscope:

Horizontal:

| Time base: | $50 \mu \mathrm{~s} / \mathrm{div}$ |
| :--- | :--- |
| Horizontal trigger position: | 0.0 ns |
| Vertical: |  |
| CH1: | $50 \mathrm{mV} / \mathrm{div} \mathrm{DC}$ |
| Voltage scale division: | 0.0 divs |
| Zero position: |  |
| CH2: | $1 \mathrm{~V} / \mathrm{div} \mathrm{DC}$ |
| Voltage scale division: | 0.0 divs |
| Zero position: |  |

Trigger:
Single (not Alternate)

| Source: | CH 2 |
| :--- | :--- |
| Mode: | Edge |
| Edge: | Rising |
| Threshold: | 0.000 mV |
| Trigger mode: | Auto |

- It may be necessary to change the Time/div and Volts/div settings during the series of measurements to ensure the signal is optimally displayed.
- Set the frequency to $f=4000 \mathrm{~Hz}$.
- Select a sinusoidal wave form on the function generator and adjust the amplitude of the input signal to $U_{0}=4 \mathrm{~V}$. Set the amplitude control in such a way that the maximum and minimum of the sinusoidal signal on channel CH 2 of the oscilloscope are separated by four divisions (for a setting of $1 \mathrm{~V} / \mathrm{div}$ ).

Since the value of the resistor $R$ is negligible in comparison to the capacitive impedance of the capacitor $X_{c}$ at the frequencies being observed, the following formula is a good approximation for the situation $U_{\mathrm{c} 0} \approx U_{0}=4 \mathrm{~V}$.

## Phase shift between current and voltage

- Observe and make a note of the relative positions of the voltage curves $U_{\mathrm{C}}(t)$ and $U_{\mathrm{R}}(t)$ across the capacitor and resistor.

How the capacitive impedance of the capacitor depends on the capacitance

- Using the $0.1 \mu \mathrm{~F}$ capacitor in both series and parallel circuits including the three $1 \mu \mathrm{~F}$ capacitors, set up circuits with the capacitance values listed in Table 1. For each setting read off the amplitudes $U_{\text {Ro }}$ from the scope and enter them into Table 1 as well.


## How capacitive impedance depends on frequency

- Use the $1 \mu \mathrm{~F}$ capacitor and $10 \Omega$ resistor for the measurements
- Set up the frequencies listed in Table 2 on the function generator one by one, read off amplitudes $U_{\text {Ro }}$ from the oscilloscope and enter them into Table 2 as well.


## SAMPLE MEASUREMENT AND EVALUATION

## Phase shift between current and voltage

The current signal is shifted by a quarter of the period to the right with respect to the voltage signal (Fig. 3).

The current through the capacitor leads the voltage across it by $90^{\circ}$ since the current charging the capacitor (positive sign) and the current when the capacitor is discharging (negative sign) are at their maximum levels when the voltage crosses the zero axis.

Tab. 1: How capacitive impedance depends on capacitance, $f=4000 \mathrm{~Hz}, R=1 \Omega, U_{0}=4 \mathrm{~V}$.

| $C$ <br> $\mu \mathrm{~F}$ | $U_{R 0}$ <br> mV | $1 / C$ <br> $1 / \mu \mathrm{F}$ | $I_{0}=U_{\mathrm{Ro}} / R$ <br> mA | $X_{\mathrm{C}}=U_{0} / l_{0}$ <br> $\Omega$ |
| :---: | :---: | :---: | :---: | :---: |
| 0.10 | 9.3 | 10.0 | 9.3 | 430.1 |
| 0.33 | 32.1 | 3.0 | 32.1 | 124.6 |
| 0.50 | 51.1 | 2.0 | 51.1 | 78.3 |
| 0.67 | 67.8 | 1.5 | 67.8 | 59.0 |
| 1.00 | 101.7 | 1.0 | 101.7 | 39.3 |
| 2.00 | 204.3 | 0.5 | 204.3 | 19.6 |

Tab. 2: How capacitive impedance depends on frequency $C=1 \mu \mathrm{~F}, R=10 \Omega, U_{0}=4 \mathrm{~V}$.

| $f$ <br> Hz | $U_{\mathrm{RO}}$ <br> mV | $1 / f$ <br> $1 / \mathrm{kHz}$ | $I_{0}=U_{\mathrm{Ro}} / R$ <br> mA | $X_{\mathrm{C}}=U_{0} / /_{0}$ <br> $\Omega$ |
| :---: | :---: | :---: | :---: | :---: |
| 200 | 50 | 5.00 | 5 | 800 |
| 300 | 78 | 3.33 | 8 | 513 |
| 500 | 127 | 2.00 | 13 | 315 |
| 1000 | 255 | 1.00 | 26 | 157 |
| 2000 | 493 | 0.50 | 49 | 81 |
| 3000 | 733 | 0.33 | 73 | 55 |
| 4000 | 993 | 0.25 | 99 | 40 |
| 5000 | 1203 | 0.20 | 120 | 33 |




Fig. 3: Capacitor in AC circuit: trace of voltage and current. Top: Recording using PC oscilloscope (current: red, voltage: yellow). Bottom: Recording using VinciL$\mathrm{ab} / \mathrm{Coach} 7$ (current: green, voltage: violet).

## How capacitive impedance depends on capacitance and frequency

- Plot the capacitive impedance values $X_{C}$ against the inverse of the capacitance (Table 1, Fig. 4) and the frequency (Table 2, Fig. 5).
As per equation (4) the capacitive impedance $X_{C}$ is proportional to the inverse of the frequency $f$ and the inverse of the capacitance $C$. In the relevant graphs, the measurements therefore lie along a straight line through the origin within the measurement tolerances.


Fig. 4: Capacitive impedance $X_{\mathrm{c}}$ as a function of the inverse of the capacitance $C$.


Fig. 5: Capacitive impedance $X_{C}$ as a function of the inverse of the frequency $f$.

